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Polychromatic solitons in a quadratic medium

I. N. Towers and B. A. Malomed
Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel

~Received 9 January 2002; published 24 October 2002!

We introduce the simplest model to describe parametric interactions in a quadratically nonlinear optical
medium with the fundamental harmonic containing two components with~slightly! different carrier frequen-
cies @which is a direct analog of wavelength-division multiplexed models, well known in media with cubic
nonlinearity#. The model takes a closed form with three different second-harmonic components, and it is
formulated in the spatial domain. We demonstrate that the model supports both polychromatic solitons~PCSs!,
with all the components present in them, and two types of mutually orthogonal simple solitons, both types
being stable in a broad parametric region. An essential peculiarity of PCS is that its power is much smaller than
that of a simple~usual! soliton ~taken at the same values of control parameters!, which may be an advantage
for experimental generation of PCSs. Collisions between the orthogonal simple solitons are simulated in detail,
leading to the conclusion that the collisions are strongly inelastic, converting the simple solitons into poly-
chromatic ones, and generating one or two additional PCSs. A collision velocity at which the inelastic effects
are strongest is identified, and it is demonstrated that the collision may be used as a basis to design a simple
all-optical XOR logic gate.

DOI: 10.1103/PhysRevE.66.046620 PACS number~s!: 42.65.Tg, 42.79.Ta
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I. INTRODUCTION

Wave mixing at different carrier frequencies, of whic
generation of higher harmonics is a well-known examp
has had a long history of investigation@1,2#. In an optical
medium whose symmetry group lacks a center of invers
the lowest-order nonlinear response is quadratic, which g
rise to three-photon interactions. The resultant three-w
mixing is resonant when the conditionv35v11v2, im-
posed on frequencies of the three waves, is met. In the
ticular case whenv15v2, the process reduces to th
second-harmonic generation~SHG!.

Solitons in quadratic@x (2)# media has been a major are
of research recently~see Ref.@3# for a review!. The first
experimental observation ofx (2) solitons was reported fo
type-I SHG, which involves exactly one component of ea
harmonic, in the (211)-dimensional~bulk! geometry@4#.
The observation of solitons in the (111)-dimensional geom-
etry ~planar nonlinear waveguide! followed shortly after-
wards@5#. Much theoretical work has been performed for t
solitons in both type-I and type-II SHG, the latter case
volving two components of the fundamental harmonic, c
responding to different polarizations, and a single compon
of the second harmonic@6–11#. The SHG process in an iso
tropic medium, with two polarizations at both harmonics, h
been considered too@12#.

More complex cases of multiresonance wave mixing
quadratically nonlinear media have not received much at
tion because of serious difficulties with their experimen
realization using the birefringence-based wave-vector ma
ing schemes. However, the recent rapid development of
quasi-phase-matching~QPM! technique has changed th
situation. The technique, originally proposed long ago@2#,
relied upon periodic structures~usually, periodically poled
ones! with an alternating sign of the quadratic nonlineari
Recently, the QPM technique has been extended from p
odic to Fibonacci-series-based structures@13#, and further to
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fully quasiperiodic ones@14# ~see also Ref.@15#!. This makes
it possible to essentially relax conditions on the wave-vec
difference for the matching to take place. Results presen
in Ref. @14# show, both theoretically and experimentally, n
only high values of effectivex (2) coefficients, but also tha
one can attain the wave-vector matching simultaneously
several sets of waves involved in the nonlinear interactio
In particular, the development of the QPM technique h
been an incentive to study multiresonance systems@16–19#,
a possible application of which may be design of solito
based logic gates. Indeed, a soliton may naturally be use
a bit of information, and the interactions of solitons can p
tentially support logic operations.

In this work, we develop a model of nonlinear mixin
between two fundamental-harmonic waves with different f
quencies in a quadratic medium. Via thex (2) nonlinearity,
they generate three different wave components of the sec
harmonic. Note that interactions between waves with diff
ent frequencies in optical media with cubic (x (3)) nonlinear-
ity is a well-known topic, which has extremely importa
applications to the wave-length division multiplied mult
channel format of data transmission in fiber-optic teleco
munication links@20#; however, it appears that the issue h
not yet been studied forx (2) media, in which the mixing may
be realized in both spatial and temporal domains.

We formulate the model in Sec. II, and produce its s
tionary soliton solutions in Sec. III. These may be both fu
polychromatic solitons~PCSs!, including all the five field
components, and special~simple! solutions ofA andB types,
which amount to ordinary two-component SHG solitons
mutually orthogonal~nonintersecting! subsets of the five-
wave system. In Sec. IV, we demonstrate, by means of di
simulations, that the solitons of all these types are stable
broad region in the system’s parameter space. In the s
section, we simulate collisions between the simple solito
When they overlap, the nonlinear interaction generate
component which was absent in both of them before
©2002 The American Physical Society20-1
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collision, which makes the final result of the collisio
strongly inelastic: the former simple solitons develop ex
components and become polychromatic ones. Additiona
one or two extra solitons are generated by the collision.
demonstrate that the collision between the initial simple s
tons may be a basis for an all-opticalXOR logic gate. The
paper is concluded by Sec. V.

II. THE MODEL

We consider the interaction of five waves in a diffracti
dielectric medium with the quadratic nonlinear susceptibil
The carrier frequencies of the waves satisfy resonant co
tions, v352v1 , v45v11v2 , v552v2, so thatv1 and
v2 may be classified as carriers of the fundamental-harmo
components, whilev3 , v4, andv5 represent three compo
nents of the second-harmonic wave group, generated by
two-fundamental-harmonic components via thex (2) nonlin-
earity.

Assuming, as usual, that the wave envelopesE1 ,E2 and
E3 ,E4 ,E5 of these components are slowly varying ones
system of five equations, coupled parametrically through
components of thex (2) nonlinear susceptibility tensor, can b
derived from the Maxwell’s equations to govern the evo
tion of the waves in the spatial domain~the derivation fol-
lows the well-known procedure worked out for the usu
type-I and type-IIx (2) interactions, see a detailed accou
given in the review@3#!:

2ik1

]E1

]z
1

]2E1

]x2
12x̃1E1* E3eiDk3,1,1

1A2x̃2E2* E4eiDk41250,

2ik2

]E2

]z
1

]2E2

]x2
1A2x̃2E1* E4eiDk41212x̃3E2* E5eiDk52250,

2ik3

]E3

]z
1

]2E3

]x2
1x̃1E1

2e2 iDk31150, ~1!

2ik4

]E4

]z
1

]2E4

]x2
1A2x̃2E1E2e2 iDk41250,

2ik5

]E5

]z
1

]2E5

]x2
1x̃3E2

2e2 iDk52250,

where k1 through k5 are the corresponding carrier wav
numbers,z andx are the propagation and transverse coor
nates,Dklmn5kl2km2kn is the wave-vector mismatch, an
x̃n[8pvn

2/c2x (2), x (2) being an element of the quadrat
susceptibility tensor. The extra factors of 2 in front of t
coefficientsx̃1 and x̃3 in the first two equations reflects th
fact that the equations may be derived from a Lagrang
and the factorA2 in front of all the terms containingx̃2 is
added by definition, to simplify subsequent rescalings.
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Equations~1! are normalized by measuringx and z, re-
spectively, in units of the input beam sizer 0 and diffraction
length zd5r 0

2k4 at the frequencyv11v2. Introducing di-
mensionless fields

E15~u1 /A2g!exp~ ib1z!, E25~u2 /A2g!exp~ ib2z!,

E35~u3/2g!exp~2ib1z2 iDk311z!, ~2!

E45~u4 /A2g!exp~ i ~b11b2!z2 iDk412z!,

E55~u5/2g!exp~2ib2z2 iDk522!, ~3!

andg[x̃1r 0
2, a normalized system of equations is obtaine

2
k1

k4
S i

]u1

]z
2b1u1D1

]2u1

]x2
1x1u1* u31x2u2* u450,

2
k2

k4
S i

]u2

]z
2b2u2D1

]2u2

]x2
1x2u1* u41x3u2* u550,

2
k3

k4
S i

]u3

]z
2~2b12Dk311!u3D1

]2u3

]x2
1

1

2
x1u1

250, ~4!

2
k4

k4
S i

]u4

]z
2~b11b22Dk412!u4D1

]2u4

]x2
1x2u1u250,

2
k5

k4
S i

]u5

]z
2~2b22Dk522!u5D1

]2u5

]x2
1

1

2
x3u2

250,

where xn[x̃n /x̃1 (n51,2,3, i.e.,x1[1), b1,2 being two
phase-velocity shifts. To reduce the number of parameter
Eqs. ~4!, the fields and coordinates can be rescaled furt
Defining un5b1Un , z5Z/b1, andx5X/Aub1u, we obtain

i
]U1

]Z
1

]2U1

]X2
2a1U11x1U1* U31x2U2* U450,

i
]U2

]Z
1

]2U2

]X2
2a2U21x2U1* U41x3U2* U550,

2i
]U3

]Z
1

]2U3

]X2
2a3U31

1

2
x1U1

250, ~5!

2i
]U4

]Z
1

]2U4

]X2
2a4U41x2U1U250,

2i
]U5

]Z
1

]2U5

]X2
2a5U51

1

2
x3U2

250,

where a151, a25b2 /b1 , a35(4b122Dk311)/b1 , a4
5(2b112b222Dk412)/b1, and a55(4b222Dk522)/b1.
We assume thatuk42k22k1u!kn , and everywhere, excep
for the phase-mismatch parameters introduced above,
0-2
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may set k35k45k5, i.e., the three components of th
second-harmonic wave have similar wave numbers.

Equations~5! assume that the three parametric inter
tions ~‘‘vertices’’ !, which couple, respectively, the wave trip
lets ~1,1,3!, ~2,2,5!, and~1,2,4!, are nearly phase matched~as
it was mentioned above, a possible way of achieving t
may be provided by the QPM technique based on quasip
odic structures@14#!. It is straightforward to see that, like th
model describing the type-II SHG@8–10#, Eqs.~5! have two
Manley-Rowe invariants, namely, the total power

Q5E
2`

`

uU1u21uU2u214~ uU3u21uU4u21uU5u2!dx, ~6!

and the power imbalance

Qimb5E
2`

`

uU1u22uU2u214~ uU3u22uU5u2!dx. ~7!

The present model does not include walkoff terms~group-
velocity mismatch!. While a detailed discussion of th
walkoff is beyond the scope of this work, it is relevant
mention that QPM and similar techniques, such as tand
structures@21#, make it possible to suppress the walko
@21,22#. We also note that QPM can give rise to an effect
cubic nonlinearity@23#, which may compete with the unde
lying quadratic interactions@24,15#. For this reason, cubic
terms should sometimes be added to a dynamical model
this is not an issue for immediate consideration in the pres
context. As concerns the physical realization of the syst
estimates using typical values of the relevant physical
rameters in such quadratically nonlinear materials as lith
niobate and KTP~potassium titanyl phosphate! @14,15# sug-
gest that a necessary~quasi! period of the QPM structure is
;10 mm, and the power and transverse size of the soli
beam are expected to be;20 mm and 100 mW, respectively

If still more resonances are allowed, other essential w
components may appear, for instance, those correspondi
the combinational frequenciesv12[2v12v2 and v21
[2v22v1 ~obviously, they belong to the fundamenta
harmonic wave set!. Denoting the corresponding wave num
bers ask12 andk21, we see that these new components w
indeed be essential if the wave-number triplets~12,2,3! and
~or! ~21,1,5! are nearly phase matched. The accordin
modified system will include seven components~four per-
taining to the fundamental harmonic, and three to the sec
harmonic! and five vertices. However, such a situation see
much more exotic~five simultaneous resonances! than the
more generic possibility of three simultaneous resonan
underlying the model considered in the present work.

III. STATIONARY SOLITON SOLUTIONS

Particular exact solutions of Eqs.~5! for stationary soli-
tons can be sought for in the form

Un5An sech2~lX!, n51, . . . ,5, ~8!
04662
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whereAn are amplitudes, andl is the inverse width of the
soliton. Inserting this Eq.~8! into Eqs.~5!, a solution can be
obtained if a15a25a35a45a5[a and l5Aa/2. The
amplitudes are found to be

A156AjA2 , A256
6l2

x2
2j1x3

2/2
, A35

x1A1
2

12l2
,

A45
x2A1A2

6l2
, A55

x3A2
2

6l2
, ~9!

wherej[(x3
2/22x2

2)/(x1
2/22x2

2).
In addition to the exact solution based on Eqs.~8! and~9!,

other particular solutions can be found settingU2,4,550 or,
alternatively, U1,3,450. Equations~5! then reduce to the
well-known type-I SHG model@6,7,3#,

i
]V

]Z
1

]2V

]X2
2V1V* W50, ~10!

2i
]W

]Z
1

]2W

]X2
2rW1

1

2
V250, ~11!

whereV andW are the fields at the fundamental and seco
harmonics. In this case, there is a well-known special ex
solution corresponding tor51 in Eq. ~11! @25#,

V5~3/A2!sech2~X/2!, W5~3/2!sech2~X/2!. ~12!

Whenr5” 1, a family of stationary soliton solutions to Eq
~10! and~11! can be found numerically@7# ~or approximated
analytically by means of the variational method@26#!. We
will refer to the general solution for the case whenU15V,
U35W, andU2,4,550 as anA-type soliton, while the oppo-
site B-type soliton is defined as the one withU25V, U5
5W, and U1,3,450. Both these types will also be calle
‘‘simple’’ solitons.

General solutions for the polychromatic~five-wave! soli-
ton can be found from the stationary version~the one with
]Un /]Z50) of Eqs.~5! by means of the standard numeric
methods for two-point boundary-value problems. In Figs
and 2, comparison is made between the general five-w
solitons and the particular solutions generated by Eqs.~10!
and~11! at equal values of all the parameters. In Fig. 1, o
can see that theA soliton is much larger in amplitude, while
its width is not widely different from that of the polychro
matic one. As a consequence of this, the powerQ @see Eq.
~6!# of theA-type soliton shown in Fig. 1 isQ536, while for
PCS in the same figure,Q58 @the other invariant isQimb
50 in the case considered, see Eq.~7!#.

This drastic difference in the powers can be understo
in the case of the full PCS, one has two nonlinear terms
the first two equations~5!, rather than one term in the case
the simple solitons; therefore, the amplitude necessary
compensate the spreading out of the beam due to the diff
tion term is, roughly, twice as small in comparison with t
simple solitons, or, eventually, the power is;4 times as
0-3
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small. To check whether the power of the PCS is inde
essentially lower than that of simple solitons in the gene
case, in Fig. 2 we show a typical example of the change
the two powers with the variation ofa2 or, equivalently,r in
Eq. ~11!. As is seen, PCS indeed persistently maintain
lower powerQ than itsA-type counterpart. On varying th
different parametersan ,xn the value ofQ of the polychro-
matic soliton may be increased~or decreased! in value from
that portrayed in Fig. 2, but it only exceeds that of the sim
solitons whenx2,0.7. In the limit of x2→0 Eqs. ~5! de-
couple, and the polychromatic soliton tends to a ‘‘doub
simple soliton, i.e., bothA- and B-type solitons existing in
one envelope. The double simple soliton by definition h
twice the power of single simple soliton. Provided the no
linearity coefficientx2 is large enough (x2>0.7) it is pos-
sible to conclude that PCSs in a quadratically nonlinear m

FIG. 1. Profiles of a polychromatic soliton~solid lines! and a
typeA soliton ~dotted!. Common values of the parameters for the
solutions area1, . . . ,551, x151, x252, andx351.

FIG. 2. The power invariantQ for both theA-type ~upper line,
vs r) and full polychromatic~lower line, vsa2) solitons. Values of
the parameters are the same as in Fig. 1.
04662
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dium may be produced from waves with differe
frequencies at a muchlower net input power than the ordi
nary SHG solitons, i.e., it may be essentially easier to g
erate PCSs in the experiment and use them in potential
plications. Of course, these results are meaningful provi
that these solitons are stable.

IV. STABILITY AND INTERACTIONS OF THE SOLITONS

A. The stability of the polychromatic solitons

To test the stability of PCSs, we solved the full system
Eqs. ~5!, employing the numerical split-step fast-Fourie
transform method. The simulations were performed with
computational grid of 2048 points, the transverse and pro
gation step sizes being, respectively,hx'0.02 and hz
50.01. The integration domain had the transverse s
100 (250,x,150), which is by far larger than anyx size
relevant to the solitons, see Figs. 4, 5, and 9 below. Abso
ing layers were placed at the edges of the computatio
domain to prevent reentering of radiation. Specially monit
ing interaction of the radiation waves with the absorbers,
have verified that, in all the cases considered, no reflec
took place indeed.

Evolution of initial configurations close to the stationa
solutions was simulated for a variety of parameters. To
pose initial perturbations, values of the initial amplitude a
width of the pulses were altered against the exact station
solutions. From the results of the simulations, we have c
cluded that PCSs survive, clearly remaining stable, as lon
the simulations were run, the maximum simulation leng
being 300 diffraction lengths of the soliton.

To further test robustness of PCSs, we ran numerical
periments in which the solitons were successfully genera
from initial Gaussian pulses, launched in the pump fieldsU1
andU2 ~with no initial second-harmonic components, whic
corresponds to the generation of SHG solitons in real exp
ments@27#!. The results demonstrate that PCSs not only
stable against small perturbations, but also play the role
strong attractors in the system. An example of PCS gen
tion from the Gaussian beams is illustrated by Fig. 3. Ty
cally, there is a period of strong relaxation of the beam
where the amplitudes fluctuate and excess energy is rad
away. The second-harmonic componentsU3,4,5 are gener-
ated, and the soliton arranges itself to a quasistationary fo
which then propagates, in a stable fashion, over a distanc
excess of 100 diffraction lengths~as long as the simulation
were run!. As a result of many runs of systematic simul
tions, PCSs have been found to be attractors in a broad ra
in the system’s parameter space. We concentrated mainl
the parameter spacean51, . . . ,5 andxn51, . . . ,2 where
the PCS definitely had a lower valueQ than the simple soli-
tons. In connection to this, it is relevant to note that t
above-mentioned families of the simpleA andB solitons are
also stable in the ordinary SHG model, except for a sm
region of their existence domain@3,7#.

B. Collisions between orthogonal simple solitons

An interesting possibility is to consider collisions of th
mutually orthogonal simple solitons of the above-mention
0-4
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A and B types. The overlapping between the colliding so
tons will give rise to the generation of the fieldU4, which is
absent in bothA and B solitons in their pure form, and th
issue is how the generation of this field will affect the inte
action between the solitons. Equations~11! have the property

FIG. 3. The generation of a polychromatic soliton from t

Gaussian inputU152e2x2/4 and U253e2x2/4. After an initial pe-
riod of strong relaxation, a weakly oscillating soliton is produce
The evolution of the amplitudes of theUn components vsZ is
plotted. The parameters used in this simulation werea15a251,
a35a45a554, x15x351, andx252. The power invariants are
Q513A2p andQimb525A2p.

FIG. 4. The collision between simple solitons of the mutua
orthogonalA andB types, with the initial velocities60.3 and zero-
phase difference. The parameters arean51, x15x351, x252,
andC50.3. The field components are displayed in the panels:U1

~a!, U2 ~b!, U3 ~c!, U4 ~d!, and U5 ~e!. The panel~f! shows a
combined contour plot of theU1 andU2 amplitudes. Note the mir-
ror symmetry of the profiles of the componentsU1 andU2, which
is a consequence of the fact that the imbalance invariantQimb is
zero in this case. It is obvious that the simple solitons beco
polychromatic after the collision, and the third polychromatic so
ton with the zero velocity is generated.
04662
of the Galilean invariance, so ‘‘moving’’ solitons~in fact, the
solitary beams propagating at an angle in the planar wa
guide! can be constructed by the transformation

V~X,Z!5V0~X2CZ!exp~ iCX/22 iC2Z/4!,
~13!

W~X,Z!5W0~X2CZ!exp~ iCX2 iC2Z/2!,

whereC is the ‘‘velocity’’ ~actually, a slope! of the moving
soliton.

We collided theA andB solitons with an initial separation
between their centersx0520, varying their velocities6C. A
representative set of values of the parameters for which
results are displayed below area1, . . . ,551, x15x351, and
x252; many simulations run for other values gave qu
similar results.

In the case of moderate collision velocities~and zero
phase difference between the solitons!, the generation of the
field U4 in the course of the collision gives rise to a thi
polychromaticsoliton with the zero velocity. Trajectories o
the initial A and B solitons alter, and they appear from th
collisions as PCSs too, i.e., the collision adds to them co
ponents which were initially absent. The three postcollis
solitons have roughly equal powers, with a mirror symme
in the power distribution amongst individual componen
see Fig. 4. At higher collision velocities~again, for the zero
phase difference!, four PCSs are generated by the collisio
all having a nonzero velocity~see Fig. 5!. As the collision
velocity increases, less and less interaction takes place,
the initial solitons pass through one another unchanged~elas-
tically!. In all these cases, 90% of the initial power is typ
cally converted into the resulting PCSs, i.e., radiation los
not a dominant actor in the collision dynamics.

Results produced by many runs of the simulations for
collision of the in-phase~zero-phase-difference! solitons are
summarized in Figs. 6 and 7. The constant initial separa

.

e

FIG. 5. The same as in Fig. 4, except that the collision veloci
are larger61.0. A zero-velocity soliton is no longer generated af
the collision. Instead, four solitons are observed in the postcollis
state. In the panel~f! the outer beams terminate prematurely b
cause they hit the absorbing sponges used in the numerical sch
0-5
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x0 between the solitons in the simulations means that
increasing velocity corresponds to an increasing incide
angleu i . As may be naturally expected, the collision alte
the trajectories of the solitons most in the case of low velo
ties. At higher velocities, the outer solitons keep essenti
the same velocity after the collision as they had before
while the two additionally generated inner solitons are s
nificantly slower.

The most significant inelastic effects occur when the s
tons collide with the velocities60.4. In this case, the exi

FIG. 6. The exit angle~in degrees! ue for the outer solitons, as
found from the simulations of the collision, vs the incidence an
u i . The angles are between the solitons’ trajectories and thez axis
in the (x,z) plane, so that an increase in the incidence angle co
sponds to an increase in the collision velocity. Naturally, the co
sion becomes less inelastic asu i increases, and eventually the ex
angle becomes nearly equal to the incidence one.

FIG. 7. Distribution of the powersQn5*2`
` uUnu2dx between

the components of the former A or B soliton after the collision, a
function of the soliton velocity before the collision. At higher v
locities, the collision gives rise to four~rather than three! solitons,
which take a part of the energy.
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trajectory is altered the most~see Fig. 6!, and, as per Fig. 7
the largest part of the net power is transferred into the ne
generated harmonic components of the outer solitons.

The interaction between theA and B solitons produces
nontrivial results also in the case when they have zero in
velocities, but their tails overlap at the initial position. F
the initial separationx055, the result of the interaction with
C50 is displayed in Fig. 8, in the form of the distribution o
the fieldsU1 and U2 produced by the interaction. Again
three PCSs appear, the central one with the zero velocity,
two outer solitons with nonzero velocities. In the course
the evolution, a phase difference develops across the com
nent fields. In fact, it is this phase difference which repuls
the outer solitons, lending them a nonzero velocity.

It is well known from theoretical@28# and experimental
@27# studies of collisions between SHG solitons of the us
type that the result strongly depends on their relative phas
the collision point~provided that the colliding solitons hav
nearly identical amplitudes!: they attract each other, an
therefore interact strongly in the case of the zero-phase
ference, and repel each other if the phase difference betw
the fundamental-harmonic components isp. However, in the
present system the effect of the phase difference on collis
between the simple solitons of the orthogonal types is m
weaker. Simulations performed with various phase diff
ences~including p/2) between the two orthogonal simp
solitons does not display any change in the postcollision
namics of the beams when compared to the zero-ph
difference case. Also it may be seen from the structure of
underlying system~5! that phase differences between theA
andB solitons will have little effect. Indeed, these equatio
are exactly invariant against the transformationu1
→u1 exp(if1), u3→u3 exp(2if1), u2→u2 exp(if2), u5
→u5 exp(2if2), andu4→u4 exp(if11if2) with an arbitrary
phase shiftf1,2.

The interactions between the simple solitons in this s
tem may find application as a basis for an all-optical log
gate. Indeed, consider two solitons of theA and~or! B types,

e

e-
-

a

FIG. 8. The combined amplitude contour plot of the pum
wavesU1 and U2 in the case when the initial velocities of th
simple solitonsA andB are zero.
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propagating in such a way that they will collide. If the so
tons belong to the same type~i.e., the configuration isAA or
BB), then they attract or repel one another, depending
their relative phase@27,28#, or, if the relative velocity is high
enough, they simply pass through one another. But if t
belong to the opposite types~an AB configuration!, at least
three PCSs are produced by the collision even at high vel
ties. This is a behavior which is expected from an exclus
OR gate, aliasXOR. The actual outcome can be easily esta
lished by checking theU4 content in the output~by means of
an appropriate optical filter!. An advantage of such a desig
of the XOR gate is that any output beam will be a stationa
soliton ~even in the case of a strongly inelastic collision!,
which makes it convenient for further manipulations~cascad-
ability!.

V. CONCLUSION

We have introduced the simplest five-component mode
polychromatic solitons~PCSs! in a quadratically nonlinea
optical medium. The existence and stability of both po
h,
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chromatic and two types of simple solitons have been de
onstrated. An essential peculiarity of PCSs is that their po
is much smaller, at the same values of the control para
eters, than the power of the usual two-component~simple!
solitons. We have also performed systematic simulations
collisions between mutually orthogonal simple solitons, co
cluding that the collisions are strongly inelastic~including
the interaction between two solitons with the zero initial v
locity!, giving rise to transformation of the simple soliton
into polychromatic ones, and generation of one or two ad
tional PCSs. A value of the relative velocity at which th
inelastic effects are strongest has been found. We have
shown that the collision may serve as a basis to desig
simple all-optical logic gate of theXOR type.
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