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Polychromatic solitons in a quadratic medium
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We introduce the simplest model to describe parametric interactions in a quadratically nonlinear optical
medium with the fundamental harmonic containing two components (siiphtly) different carrier frequen-
cies[which is a direct analog of wavelength-division multiplexed models, well known in media with cubic
nonlinearity. The model takes a closed form with three different second-harmonic components, and it is
formulated in the spatial domain. We demonstrate that the model supports both polychromatic €eiSas
with all the components present in them, and two types of mutually orthogonal simple solitons, both types
being stable in a broad parametric region. An essential peculiarity of PCS is that its power is much smaller than
that of a simple(usua) soliton (taken at the same values of control paramgtevhich may be an advantage
for experimental generation of PCSs. Collisions between the orthogonal simple solitons are simulated in detail,
leading to the conclusion that the collisions are strongly inelastic, converting the simple solitons into poly-
chromatic ones, and generating one or two additional PCSs. A collision velocity at which the inelastic effects
are strongest is identified, and it is demonstrated that the collision may be used as a basis to design a simple
all-optical xor logic gate.
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[. INTRODUCTION fully quasiperiodic onegl4] (see also Ref.15]). This makes
it possible to essentially relax conditions on the wave-vector
Wave mixing at different carrier frequencies, of which difference for the matching to take place. Results presented
generation of higher harmonics is a well-known example,jn Ref.[14] show, both theoretically and experimentally, not
has had a long history of investigati¢f,2]. In an optical only high values of effective/(?) coefficients, but also that
medium whose symmetry group lacks a center of inversionpne can attain the wave-vector matching simultaneously for
the lowest-order nonlinear response is quadratic, which giveseveral sets of waves involved in the nonlinear interactions.
rise to three-photon interactions. The resultant three-wavén particular, the development of the QPM technique has
mixing is resonant when the condition;=w;+ w,, iM-  been an incentive to study multiresonance systgifis-19,
posed on frequencies of the three waves, is met. In the paa possible application of which may be design of soliton-
ticular case whenw;=w,, the process reduces to the based logic gates. Indeed, a soliton may naturally be used as

second-harmonic generatig8HG). a bit of information, and the interactions of solitons can po-
Solitons in quadrati§ y(*)] media has been a major area tentially support logic operations.
of research recentlysee Ref[3] for a review. The first In this work, we develop a model of nonlinear mixing

experimental observation gf(® solitons was reported for between two fundamental-harmonic waves with different fre-
type-I SHG, which involves exactly one component of eachquencies in a quadratic medium. Via thé& nonlinearity,
harmonic, in the (2 1)-dimensional(bulk) geometry[4].  they generate three different wave components of the second
The observation of solitons in the ¢11)-dimensional geom- harmonic. Note that interactions between waves with differ-
etry (planar nonlinear waveguigiefollowed shortly after- ent frequencies in optical media with cubig®) nonlinear-
wards[5]. Much theoretical work has been performed for theity is a well-known topic, which has extremely important
solitons in both type-l and type-ll SHG, the latter case in-applications to the wave-length division multiplied multi-
volving two components of the fundamental harmonic, cor-channel format of data transmission in fiber-optic telecom-
responding to different polarizations, and a single componenmunication links[20]; however, it appears that the issue has
of the second harmoni®—11]. The SHG process in an iso- not yet been studied fof® media, in which the mixing may
tropic medium, with two polarizations at both harmonics, hasbe realized in both spatial and temporal domains.
been considered tdd.2]. We formulate the model in Sec. Il, and produce its sta-
More complex cases of multiresonance wave mixing intionary soliton solutions in Sec. lll. These may be both fully
quadratically nonlinear media have not received much atterpolychromatic solitondPCS$, including all the five field
tion because of serious difficulties with their experimentalcomponents, and speci@imple solutions ofA andB types,
realization using the birefringence-based wave-vector matchwhich amount to ordinary two-component SHG solitons in
ing schemes. However, the recent rapid development of theutually orthogonal(nonintersecting subsets of the five-
guasi-phase-matchingQPM) technique has changed the wave system. In Sec. IV, we demonstrate, by means of direct
situation. The technique, originally proposed long 48f  simulations, that the solitons of all these types are stable in a
relied upon periodic structure@sually, periodically poled broad region in the system’s parameter space. In the same
ones with an alternating sign of the quadratic nonlinearity. section, we simulate collisions between the simple solitons.
Recently, the QPM technique has been extended from periA/hen they overlap, the nonlinear interaction generates a
odic to Fibonacci-series-based structur&3], and further to component which was absent in both of them before the
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collision, which makes the final result of the collision Equations(1) are normalized by measuringand z, re-
strongly inelastic: the former simple solitons develop extraspectively, in units of the input beam sizg and diffraction
components and become polychromatic ones. Additionallylength z;=r3k, at the frequencyw;+ w,. Introducing di-
one or two extra solitons are generated by the collision. Wenensionless fields
demonstrate that the collision between the initial simple soli-
tons may be a basis for an all-opticebr logic gate. The Ex=(ui/\N2y)expiB12), Ey=(up/+2y)exp(iB,2),
paper is concluded by Sec. V.
E3:(U3/2’y)eXF(2iB12_iAkgllz), (2)
Il. THE MODEL

Es=(Us/\2y)expli (By+ B2) 2~ AKyy2),
We consider the interaction of five waves in a diffractive

dielectric medium with the quadratic nonlinear susceptibility. Es=(us/2y)exp(2i B,2—iAKsyy), (©)]
The carrier frequencies of the waves satisfy resonant condi-
tions, w3=2w;, w,=w;+w,, ws=2w,, SO thatw,; and andy= Xlro, a normalized system of equations is obtained:
w, May be classified as carriers of the fundamental-harmonic
components, whilev;, w4, and wg represent three compo- Ky (. dug
nents of the second-harmonic wave group, generated by the “k, |27 P
two-fundamental-harmonic components via #& nonlin-

7?uy . .
+ —— T xaup Uzt xouz us=0,
X

earity. k. ( du 52U
Assuming, as usual, that the wave envelogesE, and 221 =2 = Bl | + —= + x,U¥ Ug+ yaU% Ug=0
: , 2 k' Bauz 2 A2ULUaT XUz Us=0,

E;,E4,E5 of these components are slowly varying ones, a
system of five equations, coupled parametrically through the
components of thg(® nonlinear susceptibility tensor, can be ks r?
derived from the Maxwell's equations to govern the evolu-

tion of the waves in the spatial domaithe derivation fol-

lows the well-known procedure worked out for the usual , 2

type-1 and type-11x(? interactions, see a detailed account zr(i%_(ﬁﬁ Bz—Ak412)u4) + a—u;Jr)(zullJz:Q
z IX

2

| m

1
—(2B1—Akgpuz |+ +§X1U§:0, 4

given in the review 3]): 4
i 07E1 0"2E1 k5 . aus 2 1
2k, ——+ 2 —— + 2y, EF EgelAa1n 2k—4 I —— = (2B~ Akspp)Us | + 2)(3u2 0,
+\2x,E5 E jeikar2=0, where x,=xn/x1 (N1=1,2,3, i.e.,x;=1), B, being two
phase-velocity shifts. To reduce the number of parameters in
JE, &°E, _ 5 _ Egs. (4), the fields and coordinates can be rescaled further.
2ikg——~+ ?Jr\/i}zE’{ E,e'tka2t 2y EXEge'A*522=0,  Definingu,=B,U,, z=2Z/B;, andx=X/\/[B4], we obtain
M1, PUs Uit iUt U+ xoUS U, =0
JE.  9%E I — —a U T x1Vp UsT xoUs Ug=0,
Diky 2+ L3 4 3 E2e 18kau=, D) 9z ox?
9z ox?
Mo U2 Us+ xoU U+ xsU3 Us=0,
3E4 PE, B 'a_z+ —aUsxt xo 4t X3 5=
2|k4 iAkg1o—Q,
2i aU3+072U‘°’ Us+ = y,U2=0 5
. JEs °Es ~ 2 _iAk "oz ax? R &
2|k55+—2+X3E26 18%522=0,
21 204 PYs Gt xUaUs=0
where k; through ks are the corresponding carrier wave 'S7 T oy Vet x2Uada=h,
numbersz andx are the propagation and transverse coordi-
nates AKnn=k —kyn—Kj, is the wave-vector mismatch, and 2
s  d*Ug 1,
Xn=87w?/c?x®, x? being an element of the quadratic 2i ﬁﬂLT asUs+ 5 x3U2=0,

susceptibility tensor. The extra factors of 2 in front of the

coefficientsy and}}g in the first two equations reflects the where a;=1, a,=8,/B8,, as=(4B81—2Aks1)/B1, ay

fact that the equations may be derived from a Lagrang|an (2B1+2B5—2AK410)/B1, and as=(4B,—2AKsp0)! By.

and the factory2 in front of all the terms containing, is ~ We assume thatk,—k,—k;|<k,, and everywhere, except
added by definition, to simplify subsequent rescalings. for the phase-mismatch parameters introduced above, one
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may setk;=k,=ks, i.e., the three components of the whereA, are amplitudes, and is the inverse width of the

second-harmonic wave have similar wave numbers. soliton. Inserting this Eq(8) into Egs.(5), a solution can be
Equations(5) assume that the three parametric interac-obtained if a;=a,=as=as=as=«a and A\=\/a/2. The

tions (“vertices”), which couple, respectively, the wave trip- amplitudes are found to be

lets(1,1,3, (2,2,9, and(1,2,4, are nearly phase matchéab

it was mentioned above, a possible way of achieving this 612 XlA’f
may be provided by the QPM technique based on quasiperi- A=+ Ay, A=t ————, Ag="—,
odic structure$14)). It is straightforward to see that, like the X2€+ X312 12\
model describing the type-Il SH{8-10], Egs.(5) have two
Manley-Rowe invariants, namely, the total power _ X2A1A; _X3A§
Tz Mar ?

Q= [ U+ 40U HUHUSD0% ©  wheree= (22— (32— D).

In addition to the exact solution based on E@.and(9),
other particular solutions can be found settldg,s=0 or,
alternatively, U, 3,=0. Equations(5) then reduce to the
well-known type-I SHG mod€]6,7,3],

and the power imbalance

Qimb= J7W|U1|2—|U2|2+4(|U3|2—|U5|2)dx. (7 NPV S .
Ia—Z‘l‘W— + —0, ( 0)
The present model does not include walkoff teligroup-
velocity mismatch While a detailed discussion of the W PW
walkoff is beyond the scope of this work, it is relevant to 2i—+———pW+-V?=0, (12)

9z X2 2

mention that QPM and similar techniques, such as tandem
structures[21], make it possible to suppress the walkoff
[21,22. We also note that QPM can give rise to an effective
cubic nonlinearity 23], which may compete with the under-
lying quadratic interaction$24,15. For this reason, cubic
terms should sometimes be added to a dynamical model, but V=(3IV2)secR(X/2), W=(3/2)secR(X/2). (12)
this is not an issue for immediate consideration in the present ' '

context. As concerns the physical realization of the _sySterT\Nhenp#l, a family of stationary soliton solutions to Egs.
estimates using typical values of the relevant physical Par10) and(11) can be found numericallj7] (or approximated

rameters in such quadratically nonlinear materials as Iithiun}mal ; .-
i i . ytically by means of the variational methf2b]). We
niobate and KTRpotassium titanyl phosphatil4,15 Sug- iy refer to the general solution for the case whep="V,

gest that a necessa(guas) period of the QPM structure i; Us=W, andU,, =0 as anA-type soliton, while the oppo-
~10 um, and the power and transverse size of the solitory;; B-type soliton is defined as the one with,=V, Us

beam are expected to be20 xwm and 100 mW, respectively. —W, and U, ;,=0. Both these types will also be called

If still more resonances are allowed, other essential Wavesimple" solitons.

componen_ts may appear, for i_nstance, those corresponding to General solutions for the polychromatiive-wave soli-

the - combinational frequenciess,,;=2w;~w, and waz 55 can be found from the stationary versighe one with
=2w,—w; (obviously, they belong to the fundamental- ;, ;7 _ 0y of Eqs.(5) by means of the standard numerical
harmonic wave sgtDenoting the corresponding wave NUM- hethods for two-point boundary-value problems. In Figs. 1
bers ask;; andky,, we see that these new components will 3,4 5~ comparison is made between the general five-wave

indeed be essential if Ithe \r/]vave-numbher triplﬁ12,2,3 anq | solitons and the particular solutions generated by E.
(on) (21,1,9 are nearly phase matched. The accordingly,,q(11) at equal values of all the parameters. In Fig. 1, one

modified system will include seven componefiisur per- .o see that tha soliton is much larger in amplitude, while
taining to the fundamental harmonic, and three to the secongl \\iqth is not widely different from that of the polychro-

whereV andW are the fields at the fundamental and second
harmonics. In this case, there is a well-known special exact
solution corresponding tp=1 in Eq. (11) [25],

much more exotidfive simultaneous resonangehan the
more generic possibility of three simultaneous resonance
underlying the model considered in the present work.

6)] of the A-type soliton shown in Fig. 1 iQ =36, while for
CS in the same figur&) =28 [the other invariant iQiy;
=0 in the case considered, see Ef)..
This drastic difference in the powers can be understood:
I1l. STATIONARY SOLITON SOLUTIONS in the case of the full PCS, one has two nonlinear terms in
] ) ) _ the first two equations), rather than one term in the case of
Particular exact solutions of Eqe5) for stationary soli-  the simple solitons; therefore, the amplitude necessary to

tons can be sought for in the form compensate the spreading out of the beam due to the diffrac-
tion term is, roughly, twice as small in comparison with the
U,=A,secB(AX), n=1,...,5, (8) simple solitons, or, eventually, the power is4 times as
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25 ' ' ' ' ' ' ' ' ' dium may be produced from waves with different
frequencies at a muclower net input power than the ordi-
nary SHG solitons, i.e., it may be essentially easier to gen-
7o 1 erate PCSs in the experiment and use them in potential ap-

plications. Of course, these results are meaningful provided
that these solitons are stable.

-
o
T

IV. STABILITY AND INTERACTIONS OF THE SOLITONS

Amplitude

A. The stability of the polychromatic solitons

To test the stability of PCSs, we solved the full system of
Egs. (5), employing the numerical split-step fast-Fourier-
transform method. The simulations were performed with a
computational grid of 2048 points, the transverse and propa-
gation step sizes being, respectively,~0.02 and h,

s 7T s s =0.01. The integration domain had the transverse size
100 (—50<x< +50), which is by far larger than anysize

relevant to the solitons, see Figs. 4, 5, and 9 below. Absorb-
ing layers were placed at the edges of the computational
domain to prevent reentering of radiation. Specially monitor-
ing interaction of the radiation waves with the absorbers, we

o have verified that, in all the cases considered, no reflection
small. To check whether the power of the PCS is mdeec}ook place indeed.

essentially lower than that of simple solitons in the general - g\6|,tion of initial configurations close to the stationary

case, in Fig. 2 we show a typical example of the change ofqtions was simulated for a variety of parameters. To im-
the two powers with the variation af, or, equivalentlyp in - ,qe initial perturbations, values of the initial amplitude and
Eq. (11). As is seen, PCS indeed persistently maintains yigth of the pulses were altered against the exact stationary
lower powerQ than itsA-type counterpart. On varying the gq|ytions. From the results of the simulations, we have con-
different parameters, , x, the value ofQ of the polychro-  ¢|,ded that PCSs survive, clearly remaining stable, as long as
matic soliton may be increasedr decreasedn value from  he simulations were run, the maximum simulation length
that portrayed in Fig. 2, but it only exceeds that of the smpleoemg 300 diffraction lengths of the soliton.
solitons wheny,<<0.7. In the limit of x,—0 Egs.(5) de- To further test robustness of PCSs, we ran numerical ex-
couple, and the polychromatic soliton tends to a “double” periments in which the solitons were successfully generated
simple soliton, i.e., bot- and B-type solitons existing in  from injtial Gaussian pulses, launched in the pump fids
one envelope. The double simple soliton by definition has,nqy, (with no initial second-harmonic components, which
twice the power of single simple soliton. Provided the non-¢qresponds to the generation of SHG solitons in real experi-
linearity coefficienty, is large enough X,=0.7) it is pos-  ments[27]). The results demonstrate that PCSs not only are
sible to conclude that PCSs in a quadratically nonlinear megizple against small perturbations, but also play the role of
strong attractors in the system. An example of PCS genera-
b ' ' ' ' ' ' ' tion from the Gaussian beams is illustrated by Fig. 3. Typi-
cally, there is a period of strong relaxation of the beams,
where the amplitudes fluctuate and excess energy is radiated
away. The second-harmonic componehlg, s are gener-
ated, and the soliton arranges itself to a quasistationary form,
which then propagates, in a stable fashion, over a distance in
excess of 100 diffraction lengthas long as the simulations
were run. As a result of many runs of systematic simula-
tions, PCSs have been found to be attractors in a broad range
in the system’s parameter space. We concentrated mainly on
the parameter space,=1,...,5 andy,=1, ...,2where
the PCS definitely had a lower val@than the simple soli-
tons. In connection to this, it is relevant to note that the
above-mentioned families of the simpdeandB solitons are
also stable in the ordinary SHG model, except for a small
25 s region of their existence domaji,7].

FIG. 1. Profiles of a polychromatic solitofsolid lineg and a
type A soliton (dotted. Common values of the parameters for these
solutions arexr; =1, x1=1, x»=2, andyz=1.

1 15 2 25

azfi;p 35

FIG. 2. The power invarian® for both theA-type (upper line, B. Collisions between orthogonal simple solitons
vs p) and full polychromatidlower line, vsa,) solitons. Values of An interesting possibility is to consider collisions of the

the parameters are the same as in Fig. 1. mutually orthogonal simple solitons of the above-mentioned
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Amplitude

L
60 70 80

FIG. 3. The generation of a polychromatic soliton from the
Gaussian inputl;=2e ¥ and U,=3e***. After an initial pe-

riod of strong relaxation, a weakly oscillating soliton is produced.

The evolution of the amplitudes of thd,, components v« is
plotted. The parameters used in this simulation wefe a,=1,
az=ay=as=4, xy1=x3=1, andy,=2. The power invariants are
Q=1327 andQ;p,=—527.

A andB types. The overlapping between the colliding soli-
tons will give rise to the generation of the fidlt,, which is
absent in bothA and B solitons in their pure form, and the
issue is how the generation of this field will affect the inter-
action between the solitons. Equatidii$) have the property

3

a)
Ni_ A
1
L A
X

<)

xX o

)

Q
-50 50

A
0
X

FIG. 4. The collision between simple solitons of the mutually
orthogonalA andB types, with the initial velocities- 0.3 and zero-
phase difference. The parameters atg=1, xy1=x3=1, x»=2,
andC=0.3. The field components are displayed in the pangi|s:
@, U, (b), Uz (c), U, (d), and U5 (e). The panel(f) shows a
combined contour plot of theJ; andU, amplitudes. Note the mir-
ror symmetry of the profiles of the componehis andU,, which
is a consequence of the fact that the imbalance inva@ant, is
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FIG. 5. The same as in Fig. 4, except that the collision velocities
are larger+1.0. A zero-velocity soliton is no longer generated after
the collision. Instead, four solitons are observed in the postcollision
state. In the paneff) the outer beams terminate prematurely be-
cause they hit the absorbing sponges used in the numerical scheme.

of the Galilean invariance, so “moving” solitorig fact, the
solitary beams propagating at an angle in the planar wave-
guide can be constructed by the transformation

V(X,Z)=Vo(X—CZ)exp(iCX/2—iC?Z/4),
(13
W(X,Z)=Wy(X—CZ)exp(iCX—iC?Z/2),

whereC is the “velocity” (actually, a slopgof the moving
soliton.

We collided theA andB solitons with an initial separation
between their centerg,= 20, varying their velocities- C. A
representative set of values of the parameters for which the
results are displayed below ang . =1, x;=x3=1, and
X2=2; many simulations run for other values gave quite
similar results.

In the case of moderate collision velociti€éand zero
phase difference between the solitprtke generation of the
field U, in the course of the collision gives rise to a third
polychromaticsoliton with the zero velocity. Trajectories of
the initial A and B solitons alter, and they appear from the
collisions as PCSs too, i.e., the collision adds to them com-
ponents which were initially absent. The three postcollision
solitons have roughly equal powers, with a mirror symmetry
in the power distribution amongst individual components,
see Fig. 4. At higher collision velocitigggain, for the zero
phase differenge four PCSs are generated by the collision,
all having a nonzero velocitysee Fig. 5. As the collision
velocity increases, less and less interaction takes place, until
the initial solitons pass through one another unchariglke-
tically). In all these cases, 90% of the initial power is typi-
cally converted into the resulting PCSs, i.e., radiation loss is
not a dominant actor in the collision dynamics.

zero in this case. It is obvious that the simple solitons become Results produced by many runs of the simulations for the

polychromatic after the collision, and the third polychromatic soli-
ton with the zero velocity is generated.

collision of the in-phasézero-phase-differengesolitons are
summarized in Figs. 6 and 7. The constant initial separation
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55

FIG. 6. The exit angldin degree} 0, for the outer solitons, as FIG. 8. The combined amplitude contour plot of the pump
found from the simulations of the collision, vs the incidence anglewavesul and U, in the case when the initial velocities of the

_¢9i. The angles are between Fhe solitons’ traj_ect_ories and thes simple solitonsA andB are zero.
in the (x,z) plane, so that an increase in the incidence angle corre-
sponds to an increase in the collision velocity. Naturally, the colli-trajectory is altered the mossee Fig. 6, and, as per Fig. 7,
sion becomes less inelastic dsincreases, and eventually the exit the largest part of the net power is transferred into the newly
angle becomes nearly equal to the incidence one. generated harmonic components of the outer solitons.
The interaction between th& and B solitons produces

X, between the solitons in the simulations means that th@ontrivial results also in the case when they have zero initial
increasing Ve|ocity Corresponds to an increasing incidencgebCities, but their tails overlap at the initial pOSitiOﬂ. For
angle ;. As may be naturally expected, the collision altersthe initial separatiox,=5, the result of the interaction with
the trajectories of the solitons most in the case of low veloci-C=0 is displayed in Fig. 8, in the form of the distribution of
ties. At higher velocities, the outer solitons keep essentiallhe fieldsU; and U, produced by the interaction. Again,
the same velocity after the collision as they had before itthree PCSs appear, the central one with the zero velocity, and
while the two additionally generated inner solitons are sigtwo outer solitons with nonzero velocities. In the course of
nificantly slower. the evolution, a phase difference develops across the compo-

The most significant inelastic effects occur when the solinent fields. In fact, it is this phase difference which repulses

tons collide with the velocities-0.4. In this case, the exit the outer solitons, lending them a nonzero velocity.
It is well known from theoretica[28] and experimental

5 . . , , , . . . , [27] studies of collisions between SHG solitons of the usual
type that the result strongly depends on their relative phase at
Q,q, the collision point(provided that the colliding solitons have
nearly identical amplitudes they attract each other, and
therefore interact strongly in the case of the zero-phase dif-
w0l ) ference, and repel each other if the phase difference between
the fundamental-harmonic componentsrisHowever, in the
present system the effect of the phase difference on collisions
O between the simple solitons of the orthogonal types is much
weaker. Simulations performed with various phase differ-

:Wi Q, _ ences(including 7/2) between the two orthogonal simple

solitons does not display any change in the postcollision dy-
namics of the beams when compared to the zero-phase-
difference case. Also it may be seen from the structure of the
%% underlying system5) that phase differences between the
. . . . . . . . . andB solitons will have little effect. Indeed, these equations
C ) - ) - are exactly invariant against the transformatiam
—Uexpl¢y), Uz—Uzexp(dey), Ux—Uzexpley), Us
FIG. 7. Distribution of the power®,=[*.|U,|2dx between — Us€XP(A¢,), andus— U, eXpley+igy) with an arbitrary
the components of the former A or B soliton after the collision, as aphase shiftp, ,.
function of the soliton velocity before the collision. At higher ve-  The interactions between the simple solitons in this sys-

locities, the collision gives rise to fourather than threesolitons,  tem may find application as a basis for an all-optical logic
which take a part of the energy. gate. Indeed, consider two solitons of #hend(or) B types,
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propagating in such a way that they will collide. If the soli- chromatic and two types of simple solitons have been dem-
tons belong to the same tyfiee., the configuration i&%A or  onstrated. An essential peculiarity of PCSs is that their power
BB), then they attract or repel one another, depending ofs much smaller, at the same values of the control param-
their relative phasf27,28, or, if the relative velocity is high eters, than the power of the usual two-compon@itple
enough, they simply pass through one another. But if theypolitons. We have also performed systematic simulations of
belong to the opposite typgan AB configuration, at least collisions between mutually orthogonal simple solitons, con-
three PCSs are produced by the collision even at high velociluding that the collisions are strongly inelastiocluding
ties. This is a behavior which is expected from an exclusiveéhe interaction between two solitons with the zero initial ve-
OR gate, aliasxoRr. The actual outcome can be easily estab-locity), giving rise to transformation of the simple solitons
lished by checking th&J, content in the outputby means of  into polychromatic ones, and generation of one or two addi-
an appropriate optical filterAn advantage of such a design tional PCSs. A value of the relative velocity at which the
of the XOR gate is that any output beam will be a stationaryinelastic effects are strongest has been found. We have also
soliton (even in the case of a strongly inelastic collision shown that the collision may serve as a basis to design a
which makes it convenient for further manipulatideascad- simple all-optical logic gate of thgoRr type.
ability).
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